谷氨酰胺转运体在乳腺癌治疗中的作用

于琴琴, 周思思, 方国英

中国药学杂志 ›› 2021, Vol. 56 ›› Issue (5) : 341-345.

PDF(1069 KB)
PDF(1069 KB)
中国药学杂志 ›› 2021, Vol. 56 ›› Issue (5) : 341-345. DOI: 10.11669/cpj.2021.05.001
综述

谷氨酰胺转运体在乳腺癌治疗中的作用

  • 于琴琴, 周思思, 方国英*
作者信息 +

The Role of Glutamine Transporter in Breast Cancer

  • YU Qin-qin, ZHOU Si-si, FANG Guo-ying*
Author information +
文章历史 +

摘要

与正常细胞相比,肿瘤细胞的代谢途径发生了改变,对谷氨酰胺需求量急剧增加,并且其生长增殖依赖谷氨酰胺。谷氨酰胺转运体帮助谷氨酰胺进入肿瘤细胞,在肿瘤细胞代谢通路中发挥了重要的作用。笔者综述了谷氨酰胺转运体在乳腺癌中的异常表达、对乳腺癌的影响和在乳腺癌治疗中的作用,希望能为乳腺癌的治疗拓展思路。

Abstract

The tumor metabolism is changed to have a dramatic demand of glutamine, and its growth and proliferation depend on glutamine. Glutamine transporters mediate the uptake of glutamine in tumor cell, so they play an important role in the metabolism of tumor. The review introduces the aberrant expression of glutamine transporter in breast cancer, and reveals the influence to breast cancer growth and treatment, then hope to provide new ideas for breast cancer treatment.

关键词

谷氨酰胺转运体 / 乳腺癌 / 表达 / 治疗

Key words

glutamine transporter / breast cancer / expression / therapy

引用本文

导出引用
于琴琴, 周思思, 方国英. 谷氨酰胺转运体在乳腺癌治疗中的作用[J]. 中国药学杂志, 2021, 56(5): 341-345 https://doi.org/10.11669/cpj.2021.05.001
YU Qin-qin, ZHOU Si-si, FANG Guo-ying. The Role of Glutamine Transporter in Breast Cancer[J]. Chinese Pharmaceutical Journal, 2021, 56(5): 341-345 https://doi.org/10.11669/cpj.2021.05.001
中图分类号: R915   

参考文献

[1] GHONCHEH M, POURNAMDAR Z, SALEHINIYA H. Incidence and mortality and epidemiology of breast cancer in the world[J]. Asian Pac J Cancer Prev, 2016, 17(S3): 43-46.
[2] FAN L, STRASSER-WEIPPL K, LI J J, et al. Breast cancer in China[J]. Lancet Oncol, 2014, 15(7): e279-289.
[3] NAGINI S. Breast cancer: current molecular therapeutic targets and new players[J]. Anticancer Agents Med Chem, 2017, 17(2): 152-163.
[4] WARBURG O. On the origin of cancer cells[J]. Science, 1956, 123(3191): 309-314.
[5] VANDER HEIDEN M G, CANTLEY L C, THOMPSON C B. Understanding the warburg effect: the metabolic requirements of cell proliferation[J]. Science, 2009, 324(5930): 1029-1033.
[6] HENSLEY C T, WASTI A T, DEBERARDINIS R J. Glutamine and cancer: cell biology, physiology, and clinical opportunities[J]. J Clin Invest, 2013, 123(9): 3678-3684.
[7] WISE D R, THOMPSON C B. Glutamine addiction: a new therapeutic target in cancer[J]. Trends Biochem Sci, 2010, 35(8): 427-433.
[8] KIM S, KIM D H, JUNG W H, et al. Expression of glutamine metabolism-related proteins according to molecular subtype of breast cancer[J]. Endocr Relat Cancer, 2013, 20(3): 339-348.
[9] CYNOBER L A. Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance[J]. Nutrition, 2002, 18(9): 761-766.
[10] ALTMAN B J, STINE Z E, DANG C V. From krebs to clinic: glutamine metabolism to cancer therapy[J]. Nat Rev Cancer, 2016, 16(11): 749.
[11] BHUTIA Y D, GANAPATHY V. Glutamine transporters in mammalian cells and their functions in physiology and cancer[J]. Biochim Biophys Acta, 2016, 1863(10): 2531-2539.
[12] POCHINI L, SCALISE M, GALLUCCIO M, et al. Membrane transporters for the special amino acid glutamine: structure/function relationships and relevance to human health[J]. Front Chem, 2014, 2: 61.
[13] BODE B P. Recent molecular advances in mammalian glutamine transport[J]. J Nutr, 2001, 131(suppl 9): 2475S-2485S; discussion 2486S-2487S.
[14] BI X, HENRY C J. Plasma-free amino acid profiles are predictors of cancer and diabetes development[J]. Nutr Diabetes, 2017, 7(3): e249.
[15] POFFENBERGER M C, JONES R G. Amino acids fuel T cell-mediated inflammation[J]. Immunity, 2014, 40(5): 635-637.
[16] KIM S, JUNG W H, KOO J S. The expression of glutamine-metabolism-related proteins in breast phyllodes tumors[J]. Tumour Biol, 2013, 34(5): 2683-2689.
[17] VAN GELDERMALSEN M, WANG Q, NAGARAJAH R, et al. ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer[J]. Oncogene, 2016, 35(24): 3201-3208.
[18] EL ANSARI R, MCINTYRE A, CRAZE M L, et al. Altered glutamine metabolism in breast cancer; subtype dependencies and alternative adaptations[J]. Histopathology, 2018, 72(2): 183-190.
[19] BERNHARDT S, BAYERLOVA M, VETTER M, et al. Proteomic profiling of breast cancer metabolism identifies SHMT2 and ASCT2 as prognostic factors[J]. Breast Cancer Res, 2017, 19(1): 112.
[20] JEON Y J, KHELIFA S, RATNIKOV B, et al. Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies[J]. Cancer Cell, 2015, 27(3): 354-369.
[21] WISE D R, DEBERARDINIS R J, MANCUSO A, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction[J]. Proc Natl Acad Sci USA, 2008, 105(48): 18782-18787.
[22] GAO P, TCHERNYSHYOV I, CHANG T C, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism[J]. Nature, 2009, 458(7239): 762-765.
[23] SHAJAHAN-HAQ A N, COOK K L, SCHWARTZ-ROBERTS J L, et al. MYC regulates the unfolded protein response and glucose and glutamine uptake in endocrine resistant breast cancer[J]. Mol Cancer, 2014, 13: 239.
[24] CHEN Z, WANG Y, WARDEN C, et al. Cross-talk between ER and HER2 regulates c-MYC-mediated glutamine metabolism in aromatase inhibitor resistant breast cancer cells[J]. J Steroid Biochem Mol Biol, 2015, 149: 118-127.
[25] TODOROVA V K, KAUFMANN Y, LUO S, et al. Tamoxifen and raloxifene suppress the proliferation of estrogen receptor-negative cells through inhibition of glutamine uptake[J]. Cancer Chemother Pharmacol, 2011, 67(2): 285-291.
[26] ZHOU X, ZHENG W, NAGANA GOWDA G A, et al. 1,25-Dihydroxyvitamin D inhibits glutamine metabolism in Harvey-ras transformed MCF10A human breast epithelial cell[J]. J Steroid Biochem Mol Biol, 2016, 163: 147-156.
[27] JEWELL J L, KIM Y C, RUSSELL R C, et al. Differential regulation of mTORC1 by leucine and glutamine[J]. Science, 2015, 347(6218): 194-198.
[28] WANG Q, HOLST J. L-type amino acid transport and cancer: targeting the mTORC1 pathway to inhibit neoplasia[J]. Am J Cancer Res, 2015, 5(4): 1281-1294.
[29] EL ANSARI R, CRAZE M L, MILIGY I, et al. The amino acid transporter SLC7A5 confers a poor prognosis in the highly proliferative breast cancer subtypes and is a key therapeutic target in luminal B tumours[J]. Breast Cancer Res, 2018, 20(1): 21.
[30] FURUYA M, HORIGUCHI J, NAKAJIMA H, et al. Correlation of L-type amino acid transporter 1 and CD98 expression with triple negative breast cancer prognosis[J]. Cancer Sci, 2012, 103(2): 382-389.
[31] BARTLETT J M, THOMAS J, ROSS D T, et al. Mammostrat as a tool to stratify breast cancer patients at risk of recurrence during endocrine therapy[J]. Breast Cancer Res, 2010, 12(4): R47.
[32] BANSAL A, GARG M, CHINTAMANI C, et al. Immunohistochemical expression of carcinoembryonic antigen-related cell adhesion molecules 5, CEACAM6, and SLC7A5: do they aid in predicting the response to neo-adjuvant chemotherapy in locally advanced breast cancer?[J]. Clin Cancer Investig J, 2014, 3(6): 521-525.
[33] ONG Z Y, CHEN S, NABAVI E, et al. Multibranched gold nanoparticles with intrinsic LAT-1 targeting capabilities for selective photothermal therapy of breast cancer[J]. ACS Appl Mater Interfaces, 2017, 9(45): 39259-39270.
[34] LI L, DI X, WU M, et al. Targeting tumor highly-expressed LAT1 transporter with amino acid-modified nanoparticles: toward a novel active targeting strategy in breast cancer therapy[J]. Nanomedicine, 2017, 13(3): 987-998.
[35] NAKANISHI T, HATANAKA T, HUANG W, et al. Na+-and CL--coupled active transport of carnitine by the amino acid transporter ATB0,+ from mouse colon expressed in HRPE cells and Xenopus oocytes[J]. J Physiol, 2001, 532(Pt 2): 297-304.
[36] GUPTA N, PRASAD P D, GHAMANDE S, et al. Up-regulation of the amino acid transporter ATB(0,+) (SLC6A14) in carcinoma of the cervix[J]. Gynecol Oncol, 2006, 100(1): 8-13.
[37] KARUNAKARAN S, RAMACHANDRAN S, COOTHANKANDASWAMY V, et al. SLC6A14 (ATB0,+) protein, a highly concentrative and broad specific amino acid transporter, is a novel and effective drug target for treatment of estrogen receptor-positive breast cancer[J]. J Biol Chem, 2011, 286(36): 31830-31838.
[38] BABU E, BHUTIA Y D, RAMACHANDRAN S, et al. Deletion of the amino acid transporter Slc6a14 suppresses tumour growth in spontaneous mouse models of breast cancer[J]. Biochem J, 2015, 469(1): 17-23.
[39] BACCI M, FERRACIN M, RAMAZZOTTI M, et al. Integration of gene expression and miRNAs reveals amino acid metabolism as key metabolic hub of adaptation to long term oestrogen deprivation in ER plus breast cancer cells[J]. Eur J Cancer, 2016, 61: S45-S45.
[40] LEO J C, WANG S M, GUO C H, et al. Gene regulation profile reveals consistent anticancer properties of progesterone in hormone-independent breast cancer cells transfected with progesterone receptor[J]. Int J Cancer, 2005, 117(4): 561-568.
[41] THAKKAR A D, RAJ H, CHAKRABARTI D, et al. Identification of gene expression signature in estrogen receptor positive breast carcinoma[J]. Biomark Cancer, 2010, 2: 1-15.
[42] THAKKAR A, RAJ H, RAVISHANKAR, et al. High expression of three-gene signature improves prediction of relapse-free survival in estrogen receptor-positive and node-positive breast tumors[J]. Biomark Insights, 2015, 10: 103-112.
[43] SWEET R, PAUL A, ZASTRE J. Hypoxia induced upregulation and function of the thiamine transporter, SLC19A3 in a breast cancer cell line[J]. Cancer Biol Ther, 2010, 10(11): 1101-1111.
[44] WANG K, CAO F, FANG W, et al. Activation of SNAT1/SLC38A1 in human breast cancer: correlation with p-Akt overexpression[J]. BMC Cancer, 2013, 13: 343.

基金

浙江省基础公益研究计划项目资助(LQ18H310004);浙江省医药卫生科技计划项目资助(2018KY617)
PDF(1069 KB)

Accesses

Citation

Detail

段落导航
相关文章

/